
where the velocity of the impac=ing plates U is directed along the normal to their surfaces, 
this condition is written in the form 

t a n  = = U/c o. 

Making use of the fundamental relation of the hydrodynamic theory of Jetting, relating the 
coherent Jet velocity to the impact parameters, we obtain 

= + v 
vj  = t a n  ~ 

Thus, the velocity of a solid coherent Jet is more than twice the sound velocity of the 
Jet material. In principle, therefore, a gun that uses a coherent jet as a piston is capable 
of accelerating firing pins to more than four times the sound velocity in the jet material 
under standard conditions. 

It is essential to note that this hybrid of a llght-gas gun and explosive accelerators 
consolidates the advantages of both driving techniques. In contrast with the gas-Jetting 
shaped charges used to accelerate rigid bodies [7], the weight of the HE charge in the co- 
herent-Jet gun is an order of magnitude smaller. 
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DISTRIBUTION OF TIMES TO FRACTURE UNDER RANDOM LOADING 

V. V. Bolotin UDC 539.2:539.4 

Predicting the times for a structural element to attain a certain hazardous state (such 
as fracture) is important both from the standpoint of new structural designs and from the 
standpoint of monitoring the instantaneous state of structures in service. In the latter case 
the prediction results are used to solve the problem of the advisability or safety of con- 
tinued service of the particular structure, necessary preventive measures, etc. From the 
vantage point of mechanics, time-to-fracture prediction poses a complex problem, which in- 
cludes describing the defect accumulation process and the development of macroscopic cracks 
in the structure, as well as estimating the loss of bearing capacity of a defective structure 
and its life expectancy under the conditions of loading, which is generally of a random nature 
and is specified by certain a priori distribution functions. In this article we develop a 
defect-accumulation model for structural elements, which is conditionally separable into two 
stages: i) incubation; 2) propagation of arterial cracks. In this connection a relationship 
is postulated between a phenomenological measure of the defective state, which depends on the 
loading process, and the expectation value of the number of macroscopic cracks nucleating in 
a certain reference volume. Another significant aspect of the approach developed here is the 
application of the central limit theorem for asymptotic estimation of the distribution functions 
of nonstationary random processes to characterize the accumulation of defects in the structural 
element and its residual bearing capacity. 
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i. We consider a body of volume V, which is subjected to the prolonged action of 
random slowly varying or cyclic loads. We assume in regard to the latter that their param- 
eters vary slowly enough for the cyclic loading process to be regarded approximately as pro- 
ceeding continuously in "slow" time t. We describe the nominal stress field in the body by 
means of the vector function e(x, t), where x is the radius vector of points of the body. 
We partition the body into sections, each with a volume of the order Vo. We choose these 
sections so that the space scale of each will be sufficientl~ large in comparison with the 
structural scale of the material and with the characteristic length l, of a nucleating macro- 
scopic crack. On the other hand, the dimensions of these sections must be sufficiently small 
in comparison with the characteristic scales of variation of the macroscopic stresses and 
macroscopic properties of the volume with respect to the volume Vo. In the volume Vo we con- 
sider the field s(x, t) to be independent of x and denote it simply by s(t). For simplifica- 
tion we also assume that the characteristic length I of the developed macroscopic crack does 
not exceed the limits of the volume VQ before this length attains the maximum admissible 
value or the critical value l**. We refer to Vo hereinafter as the reference volume. Some 
of these restrictions are introduced merely to simplify the expressions and can be lifted 
without particular difficulty. 

We consider the first (incubation) stage, during which nuclei of macroscopic cracks with 
characteristic lengths l, are formed in the weakest or maximally stressed structural elements. 
We characterize the degree of readiness of the material to form a nucleus in the reference 
volume Vo by the scalar defect measure ~. This measure is a nondecreasing function of t and 
at each instant is a functional of the load history in the interval [0, t]. Inasmuch as s(t) 
is a random process, $(t) will be likewise. The distribution of its values at each instant 
is characterized by the distribution function F~ ($; t) and the corresponding probability 
density function p~ (4; t), The methods for calculating these characteristics for a given 
relation between t~e defect measure and the loading process in general are well known [i]; 
certain details will be discussed below. 

We denote the number of macroscopic cracks or crack nuclei in the reference volume Vo by 
k. This quantity is an integer-valued random process k(t). The experimeter declares the end 
of the incubation stage upon observing the first macroscopic crack in the sample. It is there- 
fore logical to postulate the relationship between the defect measure ~(t) and the expectation 
v(t) = E[k(t)] of the number of macroscopic cracks or nuclei. The expectation E(.) is evalu- 
ated with respect to the statistical ensemble of analogous volumes Vo determined under statis- 
tically uniform conditions, We thus assume that 

v =~), 0~<~ <oo, (1.1) 

where f(~) is a continuously differentiable function staisfying the conditions f'($) > 0, 
f(0) = 0, f(1) = i. Unlike the conventional treatment, here we continue the defect measure 
analytically on the interval (i, -). It is evident from these considerations that the 
reference volume must be of the order of the volume of the standard samples used in cyclic 
or long-time strength testing. 

The formation of nuclei of macroscopic cracks is an infrequent event. The characteristic 
length of the nuglei is such that with probability close to unity it is permissible to neglect 
their mutual influence and to adopt a Polsson distribution for their number k. Then the 
probability that exactly k macroscopic cracks or nuclei will occur in Vo, subject to the con- 
dition that the defect measure is equal to a prescribed value of ~, is defined as 

Q h = / ~ l r 1 6 2  k = O , i , . . .  (1.2) 

Analogously, for the probability of the occurrence of at least one crack or nucleus in Vo we 
have the expression 

q(~)  = t - exp [ - / ( ~ ) ] .  ( 1 . 3 )  

Here the functions Qk(~) and Q(~) have the significance of conditional probabilities. If the 
distribution function F~ (4; t) of the measure 4, 0~t < -, has been found for a given load- 
ing process s(t), then the probability can be calculated for the event that at least one 
macroscopic crack occurs in the volume Vo at time t: 

q (t) = S {t -- exp [-- / (r dFr (~; t). (1.4)  
0 
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The time t, of inception of the first crack is logically treated as the end of the incu- 
bation state. Thus, inasmuch as the stress state in Vo is uniform by assumption, the first- 
formed crack has a preferential chance for further growth and, as a rule, becomes the cause 
of fracture. Here we intentionally refrain from the complications introduced by crack inter- 
action, branching, etc. If we take this point of view, then expression (1.4) yields the 
distribution function of the termination times of the incubation stage: 

F ,  (t,) = S {t --  exp [-- ] (~)]} dFr (~; t,). (1 .5 )  
0 

The macroscopic crack growth stage is described by the equations of fracture mechanics 
[2]. If the loading process e(t) is random, then the results of solving these equations will 
be the formulation of the distribution function F l (l; tlt,) of the lengths 1 of cracks nu- 
cleating at time t,. In turn, t, is a random variable with the distribution function (1.5). 
Accordingly, for the unconditional distribution of the length I of the first-nucleated crack 
we obtain the expression 

t 

F, (l; t) = y Fz (l; t i t , )  dF, (t,). (1 .6)  
0 

Let the critical (or limiting) crack length be independent of s and equal to a prescribed 
value l**. Then the time t** for a crack nucleating at time t, to attain the critical length 
l** has the conditional distribution function 

F** (t** It,) = i -- fz (l**; t** It,). (1.7)  

The unconditional distribution function is defined by the equation 

F** (t**) = j F** (t** It,) dF, (t,). (i. 8) 
0 

The critical length l** usually depends on the nominal stress level at the leading edge 
of the crack at a given time. This fact somewhat complicates the problem of determining the 
distribution function for t** insofar as it necessitates the simultaneous analysis of two 
stochastically related processes l(t) and l**(t). The time t** is found from the condition 
of intersection of these two processes. 

2. The foregoing considerations are of a �9 character. We now indicate a class 
of problems for which an approximate (in the asymptotic sense) solution is more or less 
readily obtainable. Let the defect-accumulatlon process be described by the differential 
equation 

d$1dt = h ($) f, (s), (2 .1 )  

in which f:(~) and fa(s) are continuous functions of the defect measure ~ and the stress 
vector s, respectively. Here f,(~) > 0, f2(s) ~0. The initial conditions for Eq. (2.1) 
are taken in the form ~(0) = 0 for the nondefective material and in the form ~(0) = $o if 
the material has a defect ~o at time t = 0. Let the growth of the characteristic crack 
length I be described by the analogously structured equation 

dl/dt = a(l)~(s),  (2 .2 )  

in  which g , ( 1 )  > 0 and g z ( s ) / > O  a r e  c o n t i n u o u s  f u n c t i o n s  of  t he  c r a c k  l e n g t h  1 and the  
stress vector a, respectively. The initial condition for Eq. (2.2) is the nucleation of a 
macroscopic crack at time t,: l(t,) = 1,. The process l(t) is defined for t,~t < -. How- 
ever, since the crack growth is limited by considerations of the reliability Of the limiting 
value l**, the upper limit of the interval is taken as t**, where l(t**) = l**. In this sec- 
tion we regard the quantity l** as given; the case in which ~** depends on the initial stress 
vector s(t) at a given time t will be discussed below. 

The form of Eqs. (2.1) and (2.2) is chosen so that the variables in them will be sepa- 
rable. The majority of phenonenological equations describing the accumulation of defects in 
long-term or cyclic loading [i] fit into the scheme of (2.1). Among the equations of frac- 
ture mechanics, a typical representative of the type (2.2) is the Parls--Erdogan equation [2], 
which describes the subcritical growth of cracks in cyclic loading: 

dl _ e 
d--{ ---~o (AK)~' ( 2 . 3 )  
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where c and n are certain positive empirical constants, zo is the ~ime constant, and AK is 
the range of variation of the stress intensity factor K. In turn, K ~ ys/[, where s is the 
nominal s~ress at the leading edge of ~he crack and y is a coefficient of order unity. On 
the other hand, the equations in [3], which take into accoun~ the threshold value of the 
intensity factor, are not of ~he type (2.2). 

Reducing Eqs. (2.1) and (2.2) to quadratures and invoking the initial conditions, we 
obtain 

U($) = u(~, W(1) = w(t l t , ) .  (2 .4 )  

On the left-hand sides of relations (2.4) are the functions 

$ t 

I y dZ (2.5) u =. w (z) = g[ 
L 

and on the  r i g h t - h a n d  s i d e s  t h e  f u n c t i o n s  

u( t ) - - - - j ' /~ [ s (~ ) ldv ,  w (t ] t , )  ---- S g2ts(~ld~" (2.6) 
0 t ~  

With the cons~ralnts on the functions entering into Eqs. (2.1) and (2.2), all the integrals 
in (2.4) and (2.5) exist. The domains of variation of the left- and right-hand sides of Eqs. 
(2.4), generally speaking, do not coincide, a fact that must be taken into consideration in 
the ensuing calculations. 

Inasmuch as s(t) is a random process, the functions u(=) and w(tIt,) determined accord- 
ing to (2.6) will be likewise. For a certain sat of conditions imposed on the integrands 
in (2.6) the central limit theorem for integrals of random processes extends to the functions 
u(t) and w(tlt,). The conditions of this theorem, which is rigorously formulated in [4], in- 
clude not only the usual constraints on the moments of the integrands, but also the require- 
ments of sufficient mixing of the processes. In ~urn, the sufflcien~ mixing condition can 
be reduced to the requirement that the characteristic correlation time T c of the integrands 
be sufficiently small in comparison with the time interval in which the integration is car- 
ried out. It can be assumed without essential limitations that T c is of the order of the 
characteristic correlation time of the loading process s(t). Since the central limit theorem 
is used mainly to estimate the probabilities referred to the times t, and t**, the mixing 
requirement is logically written in the form 

~r << rain{t,,  t** - -  t,}. (2 .7 )  

Let the conditions of the central limit theorem from [4] be satisfied. Then for the distri- 
bution function F~ (~; t) of the defect measure ~ at time t we have the asymptotic representa- 
t ion 

V D [ u ( t ) l  ' (2.8) 

in which D(-) is the variance and ~(u) is the standard normal distribution function 

CI3 (U) = -[/2--~- "~  z2 dz. 

-The expec ta t ion  E[u ( t ) ]  and the  va r i ance  D[u( t ) ]  of the  a u x i l i a r y  process  u ( t )  are ca l -  
cu la ted  as 

E [u (t)l = .I m{& Is 
0 

t ~ (2.9) 

D [u (t)l = j' ] E {1; Is i;  Is (n)]} d ldn. 
0 0 

Here f~[s(~)] is the corresponding centered process. We obtain an analogous asymptotic rela- 
tion for the distribution function F l (l; t t,) of the length Z of a crack nucleating at time 
t,: 

r [w (z) -- E[w(t I t,~]~ (2. i0) 
F l ( l ; t i t , ) " ~  [ -VD [w (t l t,)] / 
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For a fixed t the right-hand sides of expressions (2.8) and (2.10), generally speaking, 
do not tend to unity as ~ -~ - and ~ -~ -, respectively. This means that for finite t the 
probability of detecting arbitrarily large values of ~ or I can have a nonzero value. The 
probabilities of these events are defined as the compliments of the distribution functions 
F~ (~, t) and F l (l; tlt,) to unity as ~ § - and I § -, respectively. 

3. As an illustrative example we consider cyclic loading with nominal stresses repre- 
Senting a one-dlmensional narrowband normal process with expectation zero, variance 0 2, and 
characteristic (effective) period To. The amplitudes of this process s ~ 0 obey a Rayleigh 
distribution with density function 

p (s) = ~ exp -- (3. I) 

and autocorrelation function Ks(T ) = oap(T). Here p(x) is a slowly varying function in a 
time of order To. For the defect measure ~ we take an equation of the type (2.1): 

dXb 1 (s)m 
"d; '= xVc.~o "7- , (3.2) 

where N c is the base number of cycles, m is the exponent of the fatigue curve, and r is a 
characteristic stress having the significance of the fatigue limit. For the crack length 

we use the Paris--Erdogan equation (2.3). Since the range AK of the stres~ intensity factor 
is related to the amplitude s and crack length I by the equation AK = 27s/~, expression (2.3) 
retains the structure of (2.2). 

Calculating the left-hand sides of relations (2.4) according to (2.5), we obtain 

1 
-~%--I 

u(,) = ,, w(z) =. ~- (6/~: (3.3) 
I 
-Tn-1 

The expression for W(~) is suitable for n # 2. If n = 2, then W(1) = In(I/l,). The right- 
hand sides of relations (2.4), according to (2.6), have the form 

t t 

• cr .<,)I '  =• (r <, 1" u ( O =  rojo L , ] d~, w( t l t , )  r= , /L  r j dI:, ( 3 . 4 )  

where the following notation is introduced for the time constants in order t o  abridge the 
formulas : 

[ ~,,-iI - I  
'It 2 T o = N : o ,  r~='roLC(2~,,-) z, J �9 (3.5) 

The expectations and variances of the processes u(t) and w(t]t,) are determined from 
expressions (2.9). In particular, on the basis of (3.1), we obtain for the process u(t) [5] 

1 

E [u (t)] = ~ ~T]  T 

.*'=1 

The following notation is used in the second expression (3.6): 

J 
B j ~ =  X ( -  i)h'fl F ( I  t ' k=o (k!)~(-f--k) ! / + k + ' T m ) '  

(3.7) oo 

�9 j = 2 j' p2j (~) d~, 
0 

and this expression is approximate, its error diminishing rapidly with increasing value of 
t/T c >> i. The convergence of the series in the second expression (3.6) can be proved on the 
basis of the fact that its coefficients are expressed in terms of the coefficients of the ex- 
pansion of the two-point density function for a Rayleigh process into a Laguerre polynomial 
series. For even m the upper limit of the summation in the first expression (2.7) is j = m/2. 
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Analogously, for the process w(t t,) we have 

I ,(+) < +) E [ t v ( t ] t , ) ] =  rc 1 2 2 r 1 ~  n ,  

(3.8) 
3 9  

~1 k r j j=l 

The right-hand side of the second expression, which is more precise the stronger the in- 
equality (t -- t,)/T >> i, contains the coefficients Bj,n, which are calculated from the cor- 

C 
responding expression (3.7) with m replaced by n. 

Certain results of calculations based on expressions (1.5)-(1.8). (2.8), (2.10), and 
(3.6)-(3.8) are given below. The following initial data are used for the examples: m = n = 
4, T c = Tc: B = 2, p(T) = exp (--ITI/~c), where ~c = 10-aTc �9 Graphs of the distribution func- 
tion F~ (~;'t, of the defect measure $ and the distribution function F 1 (l; tlt,) of the 
length-I of a crack nucleating at time t, are given in Figs. 1 and 2. All the curves are 
plotted for a dimensionless stress level o/r = 0.5 and various relative times t/T c and (t -- 
t,)/Tc: , respectively. The values of these times are indicated alongside the curves. 

For l + - and fixed values of t -- t, the distribution function F l (l; tlt ,) tends in 
general to a limit that differs from unity. The complement of this limit to unity is equal 
to the probability of unbounded growth of the crack for a given t -- t,. We note that for 
n <~2 the domain of variation of the function W(1) is the semiaxis [0. -], so that the 
asymptotic value of the distribution function is equal to unity as I * -. It is clear that 
the behavior of F l (1; tit,) depends strongly on how the rate dl/dt varies with growth of the 
crack length. This fact is illustrated in Fig. 3, in which the curves of W(1) for n - 2, 3~ 
4 are combined with the curves of the density function Pw (w; tlt,) for the values of the 
process w(tlt,). The hatched region corresponds to the limit of the function F 1 (1; tlt * ) 
for n = 2 and I ~ -. On the other hand, since expressions (2.8) and (2.10) are of an asymp- 
totic character, the reliability of the numerical results can suffer appreciably precisely 
at the "tails" of the distributions. 

Figure 4 giyes curves of the distribution functions F,(t,) and F**(t**It,) plotted ac- 
cording to expressions (1.5) and (1.7). The dimensionless times T = t,/T c and T = (t** -- 
t,)/Tc, are plotted along the respective horizon=el axes. The numbers alongside the curves 
of F**~t**It,) indicate the values used for the ratio l**/1,. The distribution of the times 
t** -- t, turns out to be much more compact than that of the times t,. This result is a conse- 
quence of the fact that the mechanisms of the accumulation of initial defects and propagation 
of arterial cracks differ appreciably. Whereas the statistical scatter of the times t, is 
generated both by the random distribution of defects in the material end by the random nature 
of the loading process, the scatter of the times t** -- t, (within the context of the presumed 
model) is eliclted exclusively by the random nature of the loading. 

4. We have assumed thus far that the crltlcal or maximum admissible length l** is a 
given quantity. From the standpoint of linear fracture mechanics the critical crack length 
depends significantly on the nominal stress level at the leading edge of the crack. We take 
the nonfracture condition in the form 

Kmax = ?Smax ~l < K**, (4. i) 

where Sma x is the maximum nominal stress at the leading edge and K** is the critical value 
of the stress intensity factor. Here the critical length l** (t) is a random time function 
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depending on the loading process s(t). This fact greatly complicates the solution of the 
problem of determining the distribution functions of the times to fracture, requiring re- 
course to the methods of the theory of excursions of random processes. This type of problem 
has been investigated [6] on the assumption that at some initial time to the macroscopic 
crack length ~o is given as a deterministic quantity. We now show how to take into account 
the influence of the random mechanism of the generation of a macroscopic crack on the distri- 
bution of times for the crack to attain critical length. 

As in [6], we formulate the problem in terms of the nomlnal stresses, specifying the 
latter by means of a one-dimenslonal random process s(t). The corresponding critical stress 
for a crack nucleating at tlme t, is defined, according to (4.1), as 

s** (t I t , )  = K** /~  F Z ( t l  t ,) .  ( 4 .2 )  
We de te rm ine  t he  p r o b a b i l i t y  o f  t h e  even t  t h a t  i n e q u a l i t y  ( 4 .1 )  w i l l  neve r  f a l l  i n  t he  

time interval [t,, t]. This probability has the significance of the reliability index of the 
probability of safe operation in the indicatedlnterval: 

R (t I t,) = P {s h) < s** h l t,); �9 ~ it,, t]}. (4. s) 

The difficulty of calculating this probability stems from the fact that inequality (4.1) 
must absolutely never fall up to the end of the investigated time interval, when the crack 
attains its maximum length. As a result of excursions of the process s(t) inequallty (4.1) 
can be violated even in the early stages of crack development. If such excursions are rela- 
tively infrequent events, then it is permissible to use the following approximate (under 
definite conditions, asymptotically exact) relation between the function R(tlt,) and the 
expectation X(tlt,) of the number of excursions of the process s(t) beyond the level s**(t I 
t,) per unit time: 

R (tl t , )  ~ exp - -  ~ (~ I t , )  dr . 

For the calculation of the expectations of the number of excursions, on the other hand, 
there are well-developed methods [i, 7]. 

The conditional distribution function of the times to first violation of inequality 
(4.1) is defined, obvlously, as the complement of the probabillty (4.3) to unlty, and the 
unconditional distribution function is calculated according to an expression of the type 
(1.8): 

p , ,  (t,,) = ~ [t -- B (t , ,  It,)] dF, (t,). 
0 

To calculate the expectation of the number of violations of the inequality s(t) < 
s**(tlt,) per unit time requires knowledge of the joint distribution function of the values of 
the processes s(t) and s**(tlt,) as well as their first time derivatives. However, at times 
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of the order t** -- t, >> To the process s(t) can be treated as rapidly varying in composition 
with s**(tlt,) , and within small error limits the Stochastic interdependence of the values of 
these processes at coinciding times can be neglected. These assumptions are better satisfied 
the stronger the inequality (2.7). Under the stated assumptions the characteristic X(tlt ,) 
obeys the approximate expression 

0 0 

Here v:(s, ~; t) is the joint density function for the process s(t) and its first derivative 
$(t) at coinciding times, and pa(s**; tlt,) is the density function for the process s**(t]t,) 
at the same times. The density function p,(s, ~; t) is specified as part of the description 
of the loading process, whereas the distribution of the values of the process s**(tlt,) , ac- 
cording to (4.2), is expressed in terms of the distribution function of the values of the pro- 
cess l(tlt,). 
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CONTINUATION WITH RESPECT TO A PARAMETER IN NONLINEAR 

ELASTICITY THEORY PROBLEMS 

E. I. Grigolyuk and V. I. Shalashilin UDC 539.3 

i. The equations describing the nonlinear static deformation of elastic systems gener- 
ally contain a parameter, usually the load. We consider algebraic and transcendental equa- 
tions. The generalization to functional and operator equations presents no difficulties in 
principle. 

Let us consider a system of nonlinear equations for the vector x = {xl, ..., x m} con- 
taining a parameter X: 

F ~ ,  ~) = o ,  (1.  l) 

where F = {F1(x, A), ..., Fm(x , A)} is a vector function which is nonlinear with respect to 
x and X, and is assumed continuous and differentiable with respect to x and I a sufficient 
number of times. 

Suppose for X~ [Ao, A n] Eq. (1.1) has the solution x(X), and that for X = Xo the solu- 
tion X, = X(X.) is known, i.e., 

f(~o), ~o) = 0 (l. 2) 

We introduce an (m + l)-dimensional vector space Em+,: {x, X}. In this respect the 
point corresponding to the solution of (i.i) describes a continuous curve K which passes 
through the points x(o), X(o), and X(n), X(n ). The idea of the method of continuation with 
respect to a parameter consists in constructing a sequence of solutions X(k ) = X(Xk) (k = 
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